报告题目: Slow-Fast Dynamics and Relaxation Oscillations in Biological Systems
报告人:Professor Shigui Ruan(阮士贵)
Department of Mathematics, University of Miami,Coral Gables, FL 33146, USA
报告时间:2022年3月11号(周五10:00-11:00)
报告地点:腾讯会议:179369370 密码:123456
摘要: Biological systems often evolve on different time scales or take place on various length scales. For instance, predators disperse faster than the prey; vectors (mosquitoes) have on. Geometric singular perturbation theory is a very powerful tool in analyzing physical and biological systems with different time scales. Relaxation oscillations, typically occur in dynamical systems with multiple time scales, are periodic orbits with slow and fast segments. In this talk, I will review Fenichel's theory on geometric singular perturbation theory and introduce a new criterion for the existence of relaxation oscillations based on extending the so-called entry-exit function to multi-dimensional slow-fast systems. Various multi-scale biological systems, such as predator-prey systems, epidemic models, rapid evolution systems with switching prey, and eco-evolutionary systems which exhibit slow-fast dynamics and relaxation oscillations, will be presented.
主讲人简介: 1992年获得加拿大阿尔伯特大学数学系博士学位,1992-1994年在加拿大菲尔兹数学所和麦克马斯特大学做博士后。1994-2002年在加拿大道尔豪斯大学数学与统计系先后任助理教授和副教授。现为美国迈阿密大学数学系终身教授和Cooper Fellow。主要研究领域是动力系统和微分方程及其在生物和医学中的应用。在包括《PNAS》、《Lancet Infect Dis》、《Memoirs Amer Math Soc》、《J Math Pures Appl》、《Math Ann》等学术期刊上发表了200多篇学术论文,受到了国内外同行的关注与大量引用,2014 和2015年连续被汤森路透集团列为全球高被引科学家。担任了一些重要学术期刊如《BMC Infectious Diseases》、《Bulletin of Mathematical Biology》、《DCDS-B》、《Mathematical Biosciences》等的编委,是《Mathematical Biosciences and Engineering》的主编(数学)。作为项目负责人多次获得美国国家卫生研究院(NIH)、美国国家科学基金(NSF)、国家自然科学基金会资助。2013年获得海外及港澳学者合作研究基金资助。