讲座题目: Modular Proofs of Gosper's Identities
摘要:We give unified modular proofs to all of Gosper's identities on the $q$-constant $\Pi_q$. We also confirm Gosper's observation that for any distinct positive integers $n_1,\cdots,n_m$ with $m\geq 3$, $\Pi_{q^{n_1}}$, $\cdots$, $\Pi_{q^{n_m}}$ satisfy a nonzero homogeneous polynomial. Our proofs provide a method to rediscover Gosper's identities. Meanwhile, several results on $\Pi_q$ found by El Bachraoui have been corrected. Furthermore, we illustrate a strategy to construct some of Gosper's identities using hauptmoduls for genus zero congruence subgroups.
讲座时间:2021年12月17日(周五)10:30-11:30
讲座地点:腾讯会议ID: 684345272
主讲人:王六权 副教授 (武汉大学)
主讲人简介:王六权,2014年本科毕业于浙江大学,2017年博士毕业于新加坡国立大学,现为武汉大学副教授。他主要从事数论、组合分析、q-级数及特殊函数理论的研究,迄今在《Advances in Mathematics》, 《Transactions of the American Mathematical Society》、《Advances in Applied Mathematics》、《Journal of Number Theory》、《Ramanujan Journal》等期刊上发表学术论文30多篇。