摘要:
There are a few results about the global stability of nontrivial solutions to quasilinear wave equations. In this talk, we are concerned with the uniqueness and stability of traveling wave to the time-like extremal hypersurface in Minkowski space. Firstly, we can get the existence and uniqueness of traveling wave solutions to the time-like extremal hypersurface in R^{1+(n+1)}, which can be considered as the generalized Bernstein theorem in Minkowski space. Furthermore, we also get the stability of traveling wave solutions with speed of light to time-like extremal hypersurface in 1+(2+1) dimensional Minkowski space, which is corresponding with quasilinear wave equation in two dimensions.
讲座地点:勤园21-304
讲座时间:2021年6月7日 上午9:00-10:00
讲座人简介:
周忆,复旦大学数学科学学院教授,长江学者特聘教授,国家杰出青年基金获得者,上海市领军人才。长期从事非线性波动方程的研究,研究成果多次被多位菲尔兹奖得主及国际数学家大会报告人引用,是偏微分方程特别是非线性波动方程研究领域的国际著名学者。合作科研成果曾获得国家教委科技进步一等奖、国家自然科学奖三等奖、教育部高等学校科学研究优秀成果奖一等奖。